字体:大 中 小
护眼
关灯
上一页
目录
下一页
101.奢侈的实用性 (第2/4页)
作完全不同,现在只要输入工具和需要完成的目标形状,机械手现在就可以自己判断如何去进行这项工作。由于3个可见光镜头形成的定位相当精确,作出来的小雕塑的精度都很高。自然,雕塑的难度也从非常简单的几何体逐渐向颇为复杂精细的艺术品发展,而最终作品,则是一个思考者的缩小版。看着机械手和视觉系统配合起来之后的这样的成长,每个参与其中的技术人员都感到了无比自豪。一个技术人员甚至说:“要是装了语音平台,让这家伙叫声爸爸来听听,这辈子我就不必费心找媳妇了。”而这句话居然得到了不少人的赞同。对于这样的话吕振羽不置一词,显然,他自己也有着类似的感觉。尤其是,达摩潜藏在系统里,通过机械手和视觉系统不断学习,经常向他发来一些表示兴奋,喜悦的表情符号。这个不说话的达摩,完全沉浸在学习的快乐中了,变得更像个小孩子了。在这个系统里,吕振羽当初费劲心机弄出来的减法学习程序发挥了巨大的作用,如果不是这个程序在不断起作用,让达摩可以通过学习不断去除对形成判断无关的信息,那从机械手上传来的巨大的信息量早就让整个系统崩溃了无数次了。而现在,正是因为这个程序,作为核心的达摩已经掌握了应该如何判断有用信息和无用信息,作为判断依据的信息越来越精简。而后台支持运算的服务器机群,甚至因为运算压力的减小而开始有步骤地关闭了一些。按照这个速度进行下去,这对机械手最终需要的计算资源,可能也就是4个到6个机柜,看起来不太多的服务器资源吧。吕振羽这样揣测道。和吕振羽的泰然相比,全世界的程序界和人工智能界基本上处于暴乱的状态。不少对技术有强烈的执着的人每天一封邮件地涌向数字图腾的总裁办公室,电话和传真不断,甚至已经有人直接飞来了上海,号称要“求见”吕振羽。而他们看中的,倒并非是机械手。要说机械手,日本和美国他们发展的程度绝对不低,在触觉方面,虽然日美的机械手走的都是动作控制的路线,但还是有一些学者进行着触觉模拟方面的实验。人造皮肤,电极压力感应等等一系列技术,都是日美,还有欧洲的一些科学家们首先弄出来的。虽然没有像数字图腾那样,从一开始就走动态感知的路线,并且将一系列触觉技术集大成地运用了起来,但有了数字图腾这么一个榜样,估计大家地干劲一足,成果很快就能出来。那些人工智能方面的学者们,感兴趣的是吕振羽首次披露给学术界的减法学习模式。一直以来,人工智能界都是将知识与经验的积累作为学习的几乎唯一模式,总是觉得积累的数据越多,那简单的人工智能,哪怕智能级别很低,也还是可以发挥不小的功能的。而数据的堆积,则造成了对作为人工智能的后台的计算机对计算资源和储存空间的不断加量的需求,许多实验没有取得成果前,系统却已经挺不住了。这也就是人工智能领域出成果很慢的原因之一,毕竟任何机构都不可能有无
上一页
目录
下一页